Mechanism by which cAMP activates PI3-kinase and increases bile acid secretion in WIF-B9 cells.
نویسندگان
چکیده
Previous studies in rat bile canalicular membrane vesicles and WIF-B9 cells revealed that cAMP-induced trafficking of ATP-binding cassette (ABC) transporters to the canalicular membrane and their activation require phosphoinositide 3-kinase (PI3-K) products. In the present studies, canalicular secretion of fluorescein isothiocyanate-glycocholate in WIF-B9 cells was increased by cAMP and a decapeptide that enhances PI3-K activity; these effects were inhibited by wortmannin. To determine the mechanism(s) whereby cAMP activates PI3-K, we examined signal transduction pathways in WIF-B9 and COS-7 cells. cAMP activated PI3-K in both cell lines in a phosphotyrosine-independent manner. PI3-K activity increased in association with p110 beta in both cell lines. The effect of cAMP was KT-5720 sensitive, suggesting involvement of protein kinase A. Expression of a dominant-negative beta-adrenergic receptor kinase COOH terminus (beta-ARKct), which blocks G beta gamma signaling, decreased PI3-K activation in both cell lines. cAMP increased GTP-bound Ras in COS-7 but not WIF-B9 cells. Expression of dominant-negative Ras abolished cAMP-mediated PI3-K, which suggests that the effect is downstream of Ras and G beta gamma. These data indicate that cAMP activates PI3-K in a cell type-specific manner and provide insight regarding mechanisms of PI3-K activation required for bile acid secretion.
منابع مشابه
Bile acid secretion and direct targeting of mdr1-green fluorescent protein from Golgi to the canalicular membrane in polarized WIF-B cells.
The bile canalicular membrane contains several ATP-dependent transporters that are involved in biliary secretion. Canalicular transporters are synthesized in ER, modified in Golgi and transported to the apical plasma membrane. However, the route and regulation of intracellular trafficking of ATP-dependent transporters have not been elucidated. In the present study, we generated a translational ...
متن کاملMechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles.
Bile acid secretion induced by cAMP and taurocholate is associated with recruitment of several ATP binding cassette (ABC) transporters to the canalicular membrane. Taurocholate-mediated bile acid secretion and recruitment of ABC transporters are phosphatidylinositol 3-kinase (PI3K) dependent and require an intact microtubular apparatus. We examined mechanisms involved in cAMP-mediated bile acid...
متن کاملPhosphatidylinositol 3-kinase-dependent signaling modulates taurochenodeoxycholic acid-induced liver injury and cholestasis in perfused rat livers.
Taurochenodeoxycholic acid (TCDCA), but not glycochenodeoxycholic acid (GCDCA), activates a phosphatidylinositol 3-kinase (PI3-K)-mediated survival pathway in vitro. Here, the effects of PI3-K inhibition on TCDCA- and GCDCA-induced hepatocellular injury, apoptosis, and bile secretion were examined in the intact liver. In isolated perfused rat livers, bile flow was determined gravimetrically. He...
متن کاملActivation of cAMP-guanine exchange factor confers PKA-independent protection from hepatocyte apoptosis.
cAMP has previously been shown to promote cell survival in a variety of cell types, but the downstream signaling pathway(s) of this antiapoptotic effect is unclear. Thus the role of cAMP signaling through PKA and cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs) in cAMP's antiapoptotic action was investigated in the present study. cAMP's protective effect against bile acid-, Fas li...
متن کاملEstablishment of hepatic cell polarity in the rat hepatoma-human fibroblast hybrid WIF-B9. A biphasic phenomenon going from a simple epithelial polarized phenotype to an hepatic polarized one.
By immunofluorescence and freeze fracture methods, we have studied the establishment of hepatic cell polarity in WIF-B9 cells, a subclone of the WIF-B rat hepatoma-derived hybrid cell line. As previously shown (Ihrke et al. (1993) J. Cell Biol. 123, 1761-1775; Shanks et al. (1994) J. Cell Sci. 107, 813-825), these cells are a suitable model for in vitro studies of various hepatic functions, par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 283 6 شماره
صفحات -
تاریخ انتشار 2002